Derivative of a Function: f′(x)=limh→0hf(x+h)−f(x)
Power Rule: dxdxn=nxn−1
Product Rule: dxd(uv)=u′v+uv′
Quotient Rule: dxd(vu)=v2u′v−uv′
Chain Rule: dxdf(g(x))=f′(g(x))g′(x)
Integral of a Function: ∫f(x)dx
Fundamental Theorem of Calculus: ∫abf(x)dx=F(b)−F(a)
Integration by Parts: ∫udv=uv−∫vdu
Trapezoidal Rule: ∫abf(x)dx≈2h(f(x0)+2f(x1)+⋯+2f(xn−1)+f(xn))
Simpson's Rule: ∫abf(x)dx≈3h(f(x0)+4f(x1)+2f(x2)+⋯+4f(xn−1)+f(xn))
Limit Definition: limx→af(x)=L
L'Hôpital's Rule: limx→ag(x)f(x)=limx→ag′(x)f′(x)
Taylor Series: f(x)=∑n=0∞n!f(n)(a)(x−a)n
Maclaurin Series: f(x)=∑n=0∞n!f(n)(0)xn
Partial Derivative: ∂x∂f
Gradient: ∇f=(∂x∂f,∂y∂f,∂z∂f)
Divergence: ∇⋅F
Curl: ∇×F
Line Integral: ∫CF⋅dr
Surface Integral: ∬SF⋅dS
No comments:
Post a Comment