Sine Function : sin θ = opposite hypotenuse sin θ = hypotenuse opposite
Cosine Function : cos θ = adjacent hypotenuse cos θ = hypotenuse adjacent
Tangent Function : tan θ = opposite adjacent tan θ = adjacent opposite
Pythagorean Identity : sin 2 θ + cos 2 θ = 1 sin 2 θ + cos 2 θ = 1
Double Angle Formula : sin 2 θ = 2 sin θ cos θ sin 2 θ = 2 sin θ cos θ
Double Angle Formula : cos 2 θ = cos 2 θ − sin 2 θ cos 2 θ = cos 2 θ − sin 2 θ
Half Angle Formula : sin θ 2 = ± 1 − cos θ 2 sin 2 θ = ± 2 1 − c o s θ
Half Angle Formula : cos θ 2 = ± 1 + cos θ 2 cos 2 θ = ± 2 1 + c o s θ
Sum of Angles : sin ( A + B ) = sin A cos B + cos A sin B sin ( A + B ) = sin A cos B + cos A sin B
Difference of Angles : sin ( A − B ) = sin A cos B − cos A sin B sin ( A − B ) = sin A cos B − cos A sin B
Sum of Angles : cos ( A + B ) = cos A cos B − sin A sin B cos ( A + B ) = cos A cos B − sin A sin B
Difference of Angles : cos ( A − B ) = cos A cos B + sin A sin B cos ( A − B ) = cos A cos B + sin A sin B
Tangent of Sum : tan ( A + B ) = tan A + tan B 1 − tan A tan B tan ( A + B ) = 1 − t a n A t a n B t a n A + t a n B
Tangent of Difference : tan ( A − B ) = tan A − tan B 1 + tan A tan B tan ( A − B ) = 1 + t a n A t a n B t a n A − t a n B
Cosecant Function : csc θ = 1 sin θ csc θ = s i n θ 1
Secant Function : sec θ = 1 cos θ sec θ = c o s θ 1
Cotangent Function : cot θ = 1 tan θ cot θ = t a n θ 1
Inverse Sine Function : θ = sin − 1 ( x ) θ = sin − 1 ( x )
Inverse Cosine Function : θ = cos − 1 ( x ) θ = cos − 1 ( x )
Inverse Tangent Function : θ = tan − 1 ( x ) θ = tan − 1 ( x )
No comments:
Post a Comment